Mathematical Statistics Test 1 Spring 2005 Name:.... 15+16+10+20+20+5+5+5+5 1

Let the joint p.d.f. of X and Y be defined by $f(x, y) = \frac{x+y}{12}$, x=1, 2, y=1, 2.

Find

- $f_1(x)$ and $f_2(x)$, the marginal p.d.f.'s of X and Y. (a)
- $\mu_{\scriptscriptstyle X}$ and $\mu_{\scriptscriptstyle Y}$. (b)
- σ_X^2 and σ_Y^2 . (c)
- Cov(X,Y). (d)
- (e) ρ .

(Use symmetry)

Suppose that the random variables X and Y have the following joint p.d.f.: f(x, y) = 8xy for $0 \le x \le y \le 1$.

Also let
$$U = \frac{X}{Y}$$
 and $V = Y$.

- (a) Draw the support of X and Y, and that of U and V.
- (b) Determine the joint p.d.f of U and V.
- (c) Find the marginal distributions of U and V.
- (d) Are U and \overline{V} independent?

3 Suppose that the joint p.d.f. of two random variables X and Y is as follows:

$$f(x,y) = \begin{cases} c(x+y^2) & \text{for } 0 \le x \le 1 \text{ and } 0 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Find

- (a) the conditional p.d.f. of X for any given value of Y.
- (b) P(X < 0.5 | Y = 0.5).

- Assume that *X* and *Y* have a bivariate normal distribution with, $\mu_X = 10$, $\sigma_X^2 = 16$, $\mu_Y = 12$, $\sigma_Y^2 = 9$ and $\rho = 0.8$. Find
 - (a) P(9 < Y < 17.5).
 - (b) $E(Y \mid X)$.
 - (c) $Var(Y \mid X)$.
 - (d) $P(9 < Y < 17.5 \mid X = 11)$.
 - (e) $f_X(x)$.

- Let the joint p.d.f. of X and Y be defined by f(x, y) = 2, $0 \le x \le y \le 1$. Find
 - (a) $f_1(x)$, the marginal p.d.f. of X.
 - (b) $h(y \mid x)$, the conditional distribution of Y given X = x.
 - (c) $E(Y \mid X = x)$, the conditional mean of Y given X = x.
 - (d) If it is given that $\sigma_X^2 = \sigma_Y^2$, find the value of ρ . (Hint: If $E(Y \mid X = x)$ is linear, it is the least squares regression line.)

6 Prove that Var(Y) = E[Var(Y | X)] + Var[E(Y | X)].

Let *X* and *Y* be random variables with joint moment generating function $M_{X,Y}(t_1,t_2) = 0.3 + 0.1e^{t_1} + 0.2e^{t_2} + 0.4e^{t_1+t_2}$. What is E(2X-Y)?

Let $U_1 \sim \chi^2_{(5)}$ and $U_2 \sim \chi^2_{(3)}$ are two independent χ^2 random variables with respective degrees of freedom 5 and 3. Let $V = \frac{U_1}{U_2}$. Find c such that $P(V \ge c) = 0.05$.

.

Let X_1 , X_2 , and X_3 be a random sample from Exp(1). Find the mean of the smallest order statistic.